

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sem-VII

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category)	Course Name	L	T	P	0	Е	L	T	Р	Total
Code										
	Mobile and Wireless	2	-	2	2	6	2	-	1	3
PC		Examination Scheme								
		Component		ISE (%) N		MSI	MSE (%)		2(%)	Total
EC401	Communication	Theory		20		20		60		100
		Laboratory		50				50		100

Pre-requisite Course Codes, if any.EC307: Computer Communication NetworkCourse Objective: The objective of the course is to provide a fundamental understanding of Mobileand Wireless Communication.

Course Outcomes (CO): At the end of the course students will be able to

EC311.1	Demonstrate the ability to discuss wireless communication concepts, system capacity and
	service provided.
EC311.2	Evaluate various path loss and fading effects.
EC311.3	Analyze losses, multipath effects, architecture, and protocols of 3G,4G and 5G systems.
EC311.4	Compare various operational aspects of Wireless Personal Area Networks.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC311.1	2		2									
EC311.2			2	2	2				2	2		
EC311.3	3				2				2	2		2
EC311.4	2	2										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC311.1		2				
EC311.2		2	2			
EC311.3		2	2			
EC311.4		2				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

(Autonomous Institute Affiliated to University of Mumbai)

Remember Un	nderstand√	Apply $$	Analyze√	Evaluate	Create
-------------	------------	----------	----------	----------	--------

Theory Component

Module	Unit No.	Topics	Ref.	Hrs
1	Title	Introduction to mobile communication	1	5
	1.1	Frequency Division Multiple access, Time Division Multiple access, Spread Spectrum Multiple access, Space Division Multiple access, and OFDM.		
	1.2	Frequency reuse, channel assignment strategies, handoff strategies, interference and system capacity, trunking and grade of service, improving the capacity of cellular systems and related design problems		
2	Title	Mobile Radio Propagation	2,3	10
	2.1	Introduction to radio wave propagation, reflection, diffraction, scattering. Indoor and Outdoor propagation Models. Practical Link Budget Design using path loss models.		
	2.2	Small-Scale Multipath propagation, small scale multipath measurements, types of small-scale fading, fading effects due to Doppler spread. Statistical models for multipath fading channels- Clarks model,2-day Rayleigh fading model, Saleh and Valenzuela indoor model.		
3	Title	3G UMTS Network, 4G LTE and 5G Technologies	4	8
	3.1	UMTS network architecture, Protocol Structure, Channel Structure, Frame slots and symbols, modulation, coding, multiple antenna techniques, WCDMA, Modulation, Handoff and Power Control.		
	3.2	4G LTE network Architecture, LTE Radio Access, Radio-Interface Architecture, Physical Transmission Resources, Downlink and Uplink Physical-Layer Processing, Scheduling and Rate Adaptation.5G Concepts and Architectures, Network Slicing Architecture, mm Wave communication, multiple Cell Types.		
4	Title	Personal Area Network Technologies	3	5

(Autonomous Institute Affiliated to University of Mumbai)

	4.1	Bluetooth: concepts of Piconet, scatternet etc., protocol stack, link types, security, network connection establishments, usage models, etc.		
	4.2	Wifi and ZigBee: components, architecture, network topologies, protocol stack etc.		
5	Self- Study	Rayleigh fading model, Saleh and Valenzuela indoor model. UWB and RFID: technical requirements, components and characteristics, applications.	2,3	4*
		Total (* Not Inc	luded)	28

Laboratory Components:

Sr. No	Title of the experiment
1	Study of GSM modem: i] Install and configure minicom, wvdial & AT Commands ii] Python scripting.
2	Channel Allocation Techniques
3	Modulation Techniques using GNU Radio.
4	Spread Spectrum Modulation, OFDM Modulation.
5	Wireless Path Loss Computations: i] Free-space Propagation Path Loss Modelii] Indoor Propagation Model - Okumura Model etc
6	Wireless Path Loss Computations: iii] Outdoor Propagation Model - Hata Model etc
7	Open-Source LTE/EPC Network Simulation using NS-3, Omnet++
8	Open-Source Personal Area Network simulation using NS-3, Omnet++
9	Millimeter Wave (5G) Network, WiFi Network simulation usingNS-3, Omnet++
10	Virtual Lab.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Wireless Communications	Third	Theodore S.	Prentice Hall of India,	-
			Rappaport	PTR publication	
2	Wireless Communications	Second	Andreas Molisch	Wiley	-

(Autonomous Institute Affiliated to University of Mumbai)

3	Wireless Network	Third	Vijay Garg	Pearson Education	
	Evolution 2G-3G				
4	4 G Roadmap and	Second	Young Kyun Kim	Artech house	
	Emerging Communication		and Ramjee		
	Technologies		Prasad		

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless Communication	Second	Singhal	ТМН	
2	Mobile Communication	Second	C.Y Lee	Wiley	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs./week)						Credits Assigned			
(Category)	Course Name	L	T	P	0	E	L	Т	Р	Total	
Code											
PE-III	Microwave	2	0	2	6	11	2	0	1	3	
		Examination Scheme									
		Component		ISE (%)		MSE (%)		ESE(%)		Total	
EC413	Communication	Theory		20		20		60		100	
(IT13)	3)		ory	50				5	0	100	

Pre-requi	isite Course Codes, if any.	EC304: Electromagnetic Waves					
Course O	Course Objective: The objective of the course is to provide a fundamental understanding of						
Microway	ve Communication						
Course O	Outcomes (CO): At the end of a	the course students will be able to					
EC212.1	Apply EM Wave theory to un	derstand nature of Microwave Signal and their					
LC312.1	corresponding guiding structures.						
EC312.2	Identify Passive Waveguide C	Components, Sources and Detectors					
EC312.3	Analyze Passive Waveguide	Components, Sources and Detectors					
EC312.4	Compute amplifier and filter	design parameters on the basis of application/requirement.					
EC312.5	Justify choice of amplifier and filter design parameter.						
EC312.6	Design Microwave System co	omponents.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC312.1	3	3	3	1	3					3		
EC312.2	2	2	2	2	3					3		
EC312.3	2	2	2	2	3					3		
EC312.4	2	2	2	2	3					3		
EC312.5	2	2	2	2	3					3		
EC312.6	3	3	3		3					3		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC312.1		2			-	
EC312.2		2			-	
EC312.3		2			2	
EC312.4		2			2	
EC312.5		2			2	
EC312.6		1				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand√	Apply√	Analyze√	Evaluate	Create
-----------	-------------	--------	----------	----------	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

I neory C	ompor	ient	De	TT					
Module	Unit	Topics	Ref	Hrs.					
No.	No.		•						
1		Introduction to Microwave Engineering	1	10					
	1.1	Lumped and Distributed Elements, Frequency Bands, Characteristics, Application, Advantages and disadvantages							
	1.2	Rectangular and circular waveguides: TE, TM modes, dominant mode							
	1.3 Microwave Components: Resonators, re-entrant cavities, scattering parameters, tees, hybrid ring, directional couplers, phase shifters, terminations, attenuators, ferrite devices such as isolators, gyrators, and circulators.								
2	2 Microwave Tubes and semiconductor devices								
	2.1	Two Cavity Klystron and Reflex Klystron, Helix Travelling Wave Tube, Cross Field Amplifier, Cylindrical Magnetron.							
	2.2	PIN Diode, Varactor Diode, Schottky Diode, Gunn Diode, Tunnel Diode, IMPATT Diodes.							
3		Microwave Amplifiers and Filters	1	08					
	3.1	Two port power gain and stability							
	3.2	Microwave Low pass Filter design							
4(Self Study)		Microwave Frequency Applications: Radars, Biomedical Devices, Drying materials, Microwave Tomography, Satellite Communication		06					
			Total	28					

Laboratory Component, if any. (Minimum 10 Laboratory experiments using both hardware and software are expected)

Sr. No	Title of the Experiment
1	Model and simulate rectangular waveguide in CAD to study EM wave propagation within
	it.
2	Model and simulate circular waveguide in CAD to study EM wave propagation within it.
3	Design of Waveguide H-plane TEE using CAD
4	Design of Directional Coupler Using CAD
5	Design of Low pass Filter using CAD
6	Implementation of a technical paper using CAD
7	Microwave bench setup (CO1) A) Introduction to the lab B) Identification of waveguide
	and its components. How to determine the parameters for each component by looking at
	the data sheet. C) Klystron setup and characterization plotting Vr vs Vo D) Frequency and
	wavelength measurement of the signal generated by klystron
8	Determination of parameters of passive components using Bench and VNA. Analysis of
	comparative study to be submitted.
9	Determine the frequency and wavelength in a rectangular waveguide using direct and
	indirect measurement.

(Autonomous Institute Affiliated to University of Mumbai)

Design of Planar Hybrid Ring using CAD 10

Textbooks:

S. N.	Title	Authors	Edition	Publisher	Year
1	Microwave Engineering	David M Pozar	Fourth	John Wiley & Sons	2012
2	Microwave Devices and Circuits	Samuel Y Liao	Third	Pearson Education	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				0	Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	P	Total
	Image and Video Processing	2	-	2	5	8	2	-	1	3
PE- III		Examination Scheme								
		Component		IS	ISE (%) M		ISE (%)	ES	E(%)	Total
EC423		Theory			20		20		60	100
(1T23)		Laboratory			50				50	100

Pre-requi	isite Course Codes, if any.	EC207: Signals and Systems					
		EC303: Digital Signal Processing					
Course (Course Objective: To study the image and video fundamentals and mathematical transforms						
necessary	for processing and enhancement	techniques. To study image restoration procedures and					
compressi	ion procedures for different applic	cations.					
Course O	Outcomes (CO): At the end of the	course students will be able to					
EC422-1	Apply the image fundamentals a	Apply the image fundamentals and mathematical models for digital image and video					
EC423.1	processing.						
EC423.2	423.2 Analyze time and frequency domain techniques for image enhancement.						
EC423.3	Apply segmentation and compre	ession techniques.					
EC423.4	Develop image and video proces	ssing applications.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC423.1	3	3										
EC423.2			3	2	3							2
EC423.3					3							
EC423.4	2	2			3	2			3	3		3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC423.1		2					
EC423.2					3		
EC423.3			2				
EC423.4			2			3	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply✓	Analyze√	Evaluate√	Create

Theory Component

Module	Unit	Tonics	Ref	Hrs
No.	No.	100003	1111	111.5.
1	Title	Fundamental of Image and Video	1,6	04
	1.1	Structure of the Human Eye, Light, Brightness adaption and		
		discrimination, Pixels, coordinate conventions,		
	1.2	Imaging Geometry, Image acquisition, sampling and		
		quantization, image resolution, basic relationship between pixels,		
		colour images, RGB, HSI and other models		
2	Title	Two Dimensional Transforms and Image Enhancement	1,5	06
	2.1	Discrete Fourier Transform, Discrete Cosine Transform, KL		
		Transform, and Discrete Wavelet Transform		
	2.2	Intensity transformations, contrast stretching, histogram		
		equalization, Correlation and convolution, smoothing filters,		
		sharpening filters, gradient and Laplacian, Frequency domain		
		filtering.	1.7	0.5
3	Title	Image Segmentation and Compression	1,5	05
	3.1	Point, line and edge detection, edge linking using Hough transform		
		and graph theoretic approach, thresholding, and region-based		
	2.2	segmentation, Morphological operations.		
	3.2	JPEG and MPEG compression standard, H.265 video compression		
	T . (1	standard	1.6	0.4
4	litle	Image Restoration	1,6	04
	4.1	Basic Framework, Image degradation model, Noise		
	1.2	characterization, Noise restoration filters,		
	4.2	Adaptive filters, and Estimation of Degradation functions,		
-	T:41.	Restoration Techniques.	2.2	05
5	little	video Formation and Representation	2,3	05
	5.1	Digital Video Sampling, Video Frame classifications, I, P		
		and B frames, Notation		
	5.2	Video Capture and display: Principle of color video camera, video		
		camera, digital video Sampling of video Signals: Required		
		sampling rates, sampling in two dimensions and three dimensions,		
		progressive virus interlaced scans		
6	Title	Motion Estimation	2,3	04
	6.1	Optical Flow: Motion Vs optical flow, optical flow equations,		
		motion representation, motion estimation criteria, optimization		

(Autonomous Institute Affiliated to University of Mumbai)

		method.		
	6.2	Pixel based motion estimation, Block Matching Algorithms,		
		Multi resolution Motion Estimation: General formulation.		
7	Self-	Study of different format of image and video, Basics of image and		
	Stud	video terminology, ITU-RBT 601, Digital Video formats, Digital		
	y	video quality measure.		
			Total	28

Laboratory:

Sr. No	Title of the Experiment
1.	Image Enhancement
2.	Image Transformations.
3.	Image Filtering
4.	Image Segmentations
5.	Image Compression
6.	Image Restoration
7.	Object Detection in video
8.	Motion Estimation on video
9.	Color Image Segmentation
10.	Discrete Wavelet Transforms on image

Textbook

Sr. No	Title	Edition	Authors	Publisher	Year
1	Computer Vision and applications-A GuideforStudents andPractitioners	First	Bernd Jahne and Host HauBecker	Elsevier	
2	Digital Image and Video Processing	First	Dhananjay Theckedath	Pearson Education	2019

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Image Processing	Third	Rafael C. Gonzalez	Pearson	2010
			and Richard E. Woods	Education	
2	Digital Video Processing	Second	Murat Tekalp	Pearson	2010
				Education	
3	Handbook on Image		A.I.Bovik	Academic	2009
	and Video Processing			Press	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Course Name Teaching Scheme (Hrs/wee					k) Credits Assigned			
Code	Course Name	L	Т	P	0	E	L	Т	Р	Total
		3	0	0	3	6	3	0	0	3
PE-IV	Space Communication	Examination Scheme								
		Compon	lent	IS	SE(%)	M	ISE(%)	E	SE(%)	Total
EC414	Technologies	Theor	·у	2	0		20	6	50	100
(2T14)		Laborat	ory		-		-		-	-

Pre-requisite Course Codes, if any.		Electromagnetics, FOA
Course Objec	ctive: To provide an in-depth und	derstanding of satellite communication system operation,
launching tech	nniques, satellite link design eart	n station technology and applications.
Course Outco	omes (CO): At the End of the con	urse students will be able to
CO.1	Explain and examine fundament	ntal concepts of frequency allocations, Kepler's laws, satellite
	different orbits with emphasize	on geostationary orbit.
CO.2	Evaluate different types of loss	es in satellite communications
CO.3	Analyze effects of losses on th	e carrier-to-noise ratio for the uplink, downlink, the combined
	link and received power at the	earth stations.
CO.4	Analyze different satellite acce	ss performance metrics and characteristics with and apply it to
	some satellite network applicat	ions
CO.5	Evaluate, design and develop n	ew satellite communication products, protocols, and services.
CO.6	Critically analyze current limit	tations and future challenges in satellite communications and its
	applications	

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	3	1	2									
CO.2	1	1	2									
CO.3	1	1	2									
CO.4	1	1	2									
CO.5	1	1	2		2				2			
CO.6	1	1	2									1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CO.1		1					
CO.2		2					
CO.3		2					
CO.4		2					
CO.5		2					
CO.6		2					

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Und	derstand	✓ Apply	✓ Analyze	✓ Evaluate	Create
--------------	----------	---------	-----------	------------	--------

Module	Unit	Topics	Ref.	Hrs.
<u> </u>	Title	Satellite Orbits		
1	1.1	Introduction Basic definitions Kepler's Laws Orbital Parameters Orbits		08
		in Common Use: Geostationary Orbit, Low Earth Orbit, Medium Earth		
		Orbit, Highly Elliptical Orbit and Polar Orbit.		
	1.2	Geometry of GSO Links: Range to Satellite, Elevation Angle to Satellite,		
		Azimuth Angle to Satellite, Sample Calculation.		
2	Title	Satellite Subsystems & Earth Segment		08
	2.1	Satellite Bus : Physical Structure, Power Subsystem, Attitude Control,		
		Orbital Control, Thermal Control, Tracking, Telemetry, Command, and		
		Monitoring		
	2.2	Satellite Payload: Transponder and Antennas		
	2.3	Earth Segment: Design consideration, General configuration- Block		
		diagram, receive only type earth, transmit-receive type earth station,		
		Antenna system, Feed system, Tracking system, LNA, HPA.		
3	Title	Satellite Link and Performance	6,7	10
	3.1	Transmission Fundamentals: Effective Isotropic Radiated Power,		
		Power Flux Density, Antenna Gain, Free-Space Path Loss, Basic Link		
		Equation for Received Power.		
	3.2	System Noise: Noise Figure, Noise Temperature, System Noise		
		Temperature, Figure of Merit		
	3.3	Link Performance Parameters: Carrier-to-Noise Ratio, Carrier-to-Noise		
		Density, Energy-Per-Bit to Noise Density		
	3.4	Link Considerations: Fixed Antenna Size Link, Fixed Antenna Gain Link,		
		Fixed Antenna Gain, Fixed Antenna Size Link, Uplink, Downlink.		
4	Title	Space Transmission Impairments	1,4	06
	4.1	Radio wave Frequency and Space Communication, Radio wave		
		Propagation Mechanisms, Propagation Below About 3 GHz, Ionospheric		
		Scintillation, Polarization Rotation, Group Delay, Dispersion,		
		Propagation Above About 3 GHz, Rain Attenuation, Gaseous		
		Attenuation, Cloud and Fog Attenuation, Depolarization, Tropospheric		
		Scintillation		

(Autonomous Institute Affiliated to University of Mumbai)

	4.2	Radio Noise, Specification of Radio Noise, Noise from Atmospheric Gases, Sky Noise due to Rain, Sky Noise due to Clouds, Noise from		
		Extra-Terrestrial Sources.		
	4.3	Rain Fade Mitigation		
5	Title	Satellite Multiple Access	1,2	08
	5.1	Frequency Division Multiple Access (PCM/TDM/PSK/FDMA PCM/SCPC/PSK/FDMA)		
	5.2	Time Division Multiple Access: PCM/TDM/PSK/TDMA, TDMA Frame Efficiency, TDMA Capacity, Satellite Switched TDMA		
	5.3	Code Division Multiple Access: Direct Sequence Spread Spectrum , Frequency Hopping Spread Spectrum, CDMA Processing Gain, CDMA Capacity.		
	5.4	Application to satellite Network applications		
6	Self- Study	Applications : VSAT systems: Advantages, configurations, frequency bands, elements, Broadcast services: Television broadcast systems, DAB, Mobile satellite communication: INMARSAT, LMSS, mobile satellite systems with non-GEO satellites, Satellite navigation systems, Laser Recent applications, Modern development and future trends.		
	1		Total	42

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Satellite Communications	1 st	Louis J. Ippolito, Jr	Wiley	2008
	Systems Engineering				
	Atmospheric Effects,				
	Satellite Link Design and				
	System Performance				
2	Satellite Communications	4th	Dennis Roddy	McGraw-Hill	2006

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Satellite Communication	2nd	M. Richharia	Macmillan	2003
	Systems Design Principles			Press Ltd.	
2	Satellite Communication	4th	Gerard Maral and Michel	Wiley	2001
			Bousquet		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Е	L	Τ	P	Total
	Principles of Soft Computing	2	0	2	6	8	2	0	1	3
PE- IV		Examination Scheme								
		Component		ISE (%)			MSE (%)		ESE(%)	Total
EC424		Theory			20		20		60	100
(2T24)		Laboratory			50				50	100

Pre-requi	isite Course Codes, if any.	MA101: Engineering Calculus				
		MA102: Differential Equations and Complex Analysis				
Course Objective: To implement soft computing-based solutions for solving real-world problems						
Course Outcomes (CO): At the end of the course students will be able to						
EC424.1	Identify soft computing technic	ques and their roles in building intelligent Machines.				
EC424.2	Apply fuzzy logic reasoning to	build model for solving various engineering problems.				
EC424.3	Analyze optimization issues us	sing Genetic Algorithm.				
EC424.4	Design various hybrid soft corr	nputing models by using different techniques.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC424.1	2	2			3							
EC424.2		2	2		3							
EC424.3			2		3							
EC424.4				2	3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC424.1	2			2	2	
EC424.2	2			2	2	
EC424.3	2				2	
EC424.4		3			2	3

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create

(Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module	Unit	Topics	Ref.	Hrs.
NO.	NO.		1.0	
	Title	Introduction To Soft Computing and Neural Networks	1,2	
	1.1	Introduction to Soft Computing, Difference between Hard and		04
		Soft Computing. Conventional AI, Computational Intelligence		
2	Title	Neural Networks	1,2	10
	2.1	Biological neuron, Artificial Neuron Model, Single layer		
		Multilayer Architecture of Neural Networks Architecture,		
		Activation functions, Learning rules.		
	2.2	Supervised Learning Neural Network: Back Propagation Network,	1	
		Radial Basis Function Network.		
	2.3	Unsupervised Learning Neural Network: Adaptive Resonance		
		Architecture.		
3	Title	Fuzzy Logic	3	6
	3.1	Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations		
	3.2	Membership Functions, Fuzzy Rules and Fuzzy Reasoning		
	3.3	Fuzzy Inference Systems, Fuzzy Models.		
4	Title	Genetic Algorithm	3	8
	4.1	Introduction to Genetic Algorithm, Working Principle of Genetic		
		Algorithm.		
	4.2	Various Encoding methods, Fitness function.		
5	Self-	Analyse advanced soft computing techniques.		
	Study			
	*		Total	28

Laboratory Component

Sr. No	Title of the Experiment
1	Linear & Nonlinear analysis using single & multiplayer neural network
2	Supervised learning neural network
3	Unsupervised learning neural network
4	Fuzzy logic operations
5	Fuzzy system design
6	Genetic Algorithm
7	Design Neuro-fuzzy model
8	Hybrid Design/Expert system Design

(Autonomous Institute Affiliated to University of Mumbai)

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Introduction to Artificial		Jacek M. Zurada	PWS Publishing	1995
	Neural Systems			Company	
2	Principles of Soft Computing	Third	S.N.Sivanandam and	Wiley	2018
			S.N.Deepa	Publication,	
3	Neural Networks, Fuzzy Logic		S.Rajasekaran and G.	Prentice-Hall of	2004
	and Genetic Algorithms		A. Vijayalakshami	India	

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Neural Networks: A		Simon Haykin	Macmillan College	1994
	Comprehensive Foundation			Publishing Company	
2	Neural Network Design		Martin Hagan	CENGAGE	2008
				Learning, India	
3	Fuzzy Sets and Fuzzy		George J. Klir	Prentice-Hall of	1994
	Logic: Theory and		and Bo Yuan	India	
	Applications				

(Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	P	Total
		2	0	2	6	8	2	0	1	3
PE-III		Examination Scheme								
	Semiconductor	Component		IS	ISE (%)		MSE(%)		SE (%)	Total
EC433	reemologies	The	ory	ory 20			20		60	100
(3T33)		Labor	atory		50				50	100

Pre-requisit	e Cours	Se Codes AS101: Engineering Physics
-		ET202: Electronic Devices
		EC205: Analog Circuits
		EC101: Digital Systems and Microprocessors
		T31: Digital CMOS VLSI Design
After success	ful con	pletion of the course, student will be able to
	CO1	Discuss integrated circuit fabrication processes and use modern/open-source
		tools for process simulation.
	CO2	Apply the sequence of fabrication processes and design rules for layout design
		and characterization of a given semiconductor device/MOS circuit.
Course	CO3	Discuss fundamental principles of MEMS devices including physical operation
Outcomes		and mathematical modeling.
	CO4	Apply various fabrication processes, choose suitable materials for MEMS
		device FEM modeling, fabrication and characterization.
	CO5	Discuss fundamental principles and fabrication process steps for
		semiconductor memories and displays.

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Environment and Crystal Growth for VLSI Technology		04
	1.1	Environment: Semiconductor technology trend, clean rooms	1,3	
	1.2	Semiconductor Substrate: Phase diagram and solid solubility,	1,3	
		Crystal structure, Crystal defects, Czochralski growth, Bridgman		
		growth of GaAs, Float Zone growth, Wafer Preparation and		
		specifications.		
2		Fabrication Processes Part 1		06
	2.1	Cleaning of Silicon wafer, Deposition: Evaporation, Sputtering and Chemical Vapor Deposition.	1,3	
	2.2	Epitaxy: Molecular Beam Epitaxy, Vapor Phase Epitaxy, Liquid	1,3	
		Phase Epitaxy, Evaluation of epitaxial layers		
	2.3	Silicon Oxidation: Thermal oxidation process, Kinetics of growth,	1,3	
		Properties of Silicon Dioxide, Oxide Quality, high κ and low κ		
		dielectrics.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

			Total	28
		fabrication steps		
	5.2	Display: AMOLED/OLED: Working Principle, structures,	5	
		structures and fabrication steps of one/two memory structures		
	5.1	Memory: SRAM, DRAM, MRAM, Flash: Working Principle,	4	
5		Semiconductor Memories and Display		04
		Resonant frequency		
		MEMS Cantilevers, and its Characterization for stiffness and		
		Understanding steps involved and materials used in Fabricating	3	
		coefficients, TCR, Thermal Conductivity, Material Structure.		
		Young modulus, Poisson's ratio, density, piezoresistive		
	4.2	Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties:	3	
		Pressure Sensors		
		devices like Cantilever, Microheaters, Accelerometers, and		
	4.2	Architecture, working and basic quantitative behaviour of MEMS	3	
		Bonding, Dicing, Packaging		
		Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer		
		and Real world Sensors/Actuators examples with brief description.		
		MEMS Technology, Difference between ICs and MEMS Devices		
	4.1	Introduction to MEMS Technology. Difference between ICT &	3	
		Fabrication and Characterization		
4		Introduction to MEMS, MEMS Materials Properties.		08
		combinational logic). Buried and Butting Contact.	-	
	3.5	Design rules. Layout of MOS based circuits (gates and	2	
,	34	CMOS Process Flow: N well P-well and Twin tub	2	
		Flectronics nackage reliability		
		contacts Metallization and Packaging: Integrated circuit packages		
	3.3	isolation LOCOS trench isolation Schottky contacts Obmic		
	32	Device Isolation Contacts and Matallization: Junction and avide	2	
		lithography		
	3.2	Litnography: Photoreactive materials, Pattern generation and	1,5	
	3.1	Etching: Wet chemical etching, dry physical etching, dry chemical	1,3	
3	2.1	Fabrication Processess Part 2	1.0	06
		process considerations, implantation damage and annealing.		
	2,5	Ion Implantation: Penetration range, ion implantation systems,	1,3	
		in diffusion, evaluation of diffused layers.		
		diffusion equation, impurity behavior, diffusion systems, problems		
		gradient,		
	2.4	Diffusion: Nature of diffusion, Diffusion in a concentration	1,3	
			-	

ISE Evaluation:

1) Fault identification and correction of a given CMOS circuit Layout: Group Activity within Laboratory Batch [Evaluation during laboratory session. CO3-CO4. (5 Marks)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- 2) Case Study of MEMS device fabrication and characterization: Group Activity within Laboratory Batch [Evaluation during laboratory session. CO3-CO4. (5 Marks)
- 3) Visit to CEN Lab, IIT Bombay and Report on visit (CO1-CO5) (10 Marks)

Text Books:

Sr.	Title	Edition	Authors	Publishers	Year
No.					
1	Silicon VLSI Technology	Indian	James D. Plummer,	Pearson	2000
		Edition,	Michael D. Deal		
		First	and Peter B. Griffin		
2	Fundamentals of Semiconductor	First	G. S. May and S.	Wiley	2011
	Fabrication		M. Sze		
3	Micro Electro Mechanical System	ebook	J. Allen	CRC Press	2005
	Design				
4	Semiconductor Memories	-	A.K. Sharma	IEEE	2022
	Technology, Testing and				
	Reliability				
5	Frontiers in Electrical Engineering	-	Shuming	Bentham	2015
	Vol. 1: Active-Matrix Organic		Chen, Jianning	Books	
	Light-Emitting Display		Yu, Yibin		
	Technologies		Jiang, Rongsheng		
			Chen, Tsz Kin Ho		

Recommended Books:

Sr. No.	Title	Edition	Authors	Publishers	Year
1	The Science and Engineering of Microelectronic Fabrication	Second Edition	Stephen A. Campbell	Oxford University Press	2001
2	VLSI Fabrication Principles	Student Edition	Sorab K. Gandhi	Wiley	2008
3	An Introduction to Microelectromechanical Systems Engineering	Second	N. Maluf, K Williams	Artech House Inc	2004
4	Practical MEMS	First	Ville Kaajakari	Small Gear Publishing	2009
5	Microsystem Design	First	S. Senturia	Springer	2005
6	Fundamentals of Microfabrication	Second	M. Madou	CRC Press	2002

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Each Experiment carries 05 Marks. Any 08 Experiments covering all COs.

Rubrics: Performance (3.5M), Oral Questions based on Experiment (0.5) and Documentation (01)

Sr. No.	Topics	CO
1	 Aim: Use nanohub platform to simulate and analyze the Oxidation process for various process parameters and wafer specifications. Problem Statement: Simulate the oxidation process with Deal - Groove model for different conditions (eg. Oxidation type, orientation, time, temperature, thickness etc.) and comment on the results obtained. 	CO1
2	 Aim: Use nanohub platform to simulate and analyze the diffusion process for various given conditions. Problem Statement: Simulate the diffusion process for various given conditions. Such as eg. Source, time, temperature, dopant etc. and comment on the results obtained. 	CO1
3	 Aim: Use Virtual Hall Effect Experimental set-up for the measurement of semiconductor material parameter measurements. Problem Statement: Use Hall Effect Experimental set-up available at Vlab to determine various parameters of semiconductor material like Hall's coefficient, carrier density, mobility. Compare these values with calculated values. Also study the dependence of Hall voltage on the magnetic field and the current passing through the probe. 	CO1
4	 Aim: To use Industry graded VLSI CAD tools to draw layout and analyze CMOS Inverter circuit. Problem Statement: Draw and simulate CMOS Inverter. Carry out static as well as transient simulation. Analyze CMOS Inverter for i) (W/L) PMOS >(W/L) NMOS ii) (W/L) PMOS = (W/L) NMOS iii) (W/L) PMOS < (W/L) NMOS Do parasitic extraction. Feed these parasitic in circuit simulator and do the layout versus schematic verification. 	CO2
5	 Aim: To use Industry graded VLSI CAD tools to draw layout and analyze MOS based circuit. Problem Statement: a. Draw and simulate layout for the following circuits. Size them with respect to reference inverter a: CMOS NAND b: CMOS NOR c. 6T SRAM cell for high reliability and lowest area. d. A given flipflop (SR, D, T, JK). e. Half adder. 	CO2

(Autonomous Institute Affiliated to University of Mumbai)

	 f. Logic equation using Static CMOS, dynamic logic, transmission gate. (Any one problem statement for a group of students) 	
5	 Aim: To analyze MEMS cantilever in Sugar Tool using Nanohub platform. Problem Statement: a) Choose proper dimensions of MEMS cantilever modelled in Sugar. Choose the proper co-ordinate and node for applying a point contact load (force). Observe and tabulate the maximum displacement at free end of the cantilever for at least two different values of point contact load, verify one of the readings with given analytical expression of maximum displacement of the cantilever. Comment on the results obtained. b) Choose proper dimensions of width and thickness of MEMS cantilever modelled in Sugar. Choose proper co-ordinate and node for applying certain value of point contact load (force). Observe and tabulate the maximum displacement of the maximum displacement of the cantilever. 	CO3- CO4
6	 with given analytical expression of maximum displacement of the cantilever. Comment on the results obtained. Aim: To model and analyze MEMS cantilever in COMSOL Multiphysics. Problem Statement: For the given dimensions and material create MEMS cantilever model in COMSOL and observe the dependence of resonance frequency of the cantilever on material. For the cantilever model analyze dependence of fundamental resonance frequency on varying length (given range), plot the result and also compare the result with analytical expression of resonance frequency. 	CO3- CO4
7	 Aim: To analyze MEMS capacitive pressure sensor in COMSOL Multiphysics. Problem Statement: For the given dimensions, model MEMS capacitive pressure sensor in COMSOL. a) Observe, plot changes in pressure sensor diaphragm displacement and capacitance at constant temperature (room temperature) and varying applied pressure (given range) and compare it with given analytical expressions of diaphragm displacement and capacitance of sensor. b) Observe, plot the change in pressure sensor diaphragm displacement and capacitance for fixed value of applied pressure and varying temperature to analyze the effect of package stress. 	CO3- CO4
8	 Aim: To evaluate the static and dynamic performance of the MEMS micro-heater using FEM tool. Problem Statement: For the given model of the MEMS micro-heater, a) Measure the temperature of the heated membrane for the input excitation voltage and compare it with the given analytical expression. 	CO3- CO4

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	b) To plot the temperature response of heated membrane to standard test voltages like square, Ramp, and sinusoidal.	
9	 9) Aim: To model and analyze MEMS electrostatically actuated microcantilever in COMSOL. Problem Statement: For the given model of electrostatically actuated microcantilever in COMSOL. a) To plot tip displacement of the microcantilever for different values of applied voltage. b) To plot shape of the microcantilever displacement for different values of applied voltage. 	CO3- CO4
	c) To plot capacitance of the microcantilver different values of applied voltage.	
10	 Aim: To model and analyze Piezoresitive Pressure Sensor in MEMS Design and Simulation FEM Tool. Problem Statement: Choose the proper substrate; define the process flow and Layout of Piezoresitive pressure sensor in MEMS Design and Simulation FEM Tool and create a its 3- D Layout. Observe the change in resistance of piezoresistance for given input pressure. Compare this reading with the given analytical expression of the change in resistance of the piezoresistace. 	CO3- CO4
11	Aim: To analyze the operation of semiconductor memory using NI Tool. Problem Statement: Using Multisim configure a word generator, observe the reading and writing of a 2-bit code on a RAM chip, and design, construct and simulate the writing and reading of a 4- bit code on a RAM chip	CO5
12	Aim: Develop and test low-cost self-made OLEDs. Problem Statement: Develop and test the low-cost standard-OLED on ITO2 glass with three individually controllable emission spots using the process steps described.	CO5

*Student has to perform any one experiment from 8, 9 and 10 as per the allotment by the faculty.

References:

- [1] www.nanohub.org
- [2] www.vlab.com
- [3] www.microwind.com
- [4] ICMT Laboratory Manual

[5] https://www.sciencedirect.com/science/article/pii/S0187893X137

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teac	heme (Hrs/w	Credits Assigned					
(Category) Code	Course Name	L	Т	P	0	E	L	Т	Р	Total
	Embedded and Digital Control of PE Systems	3	0	2	5	10	3	0	1	4
PE-III		Examination Scheme								
		Component			ISE (%)		MSE	(%)	ESE(%)	Total
EC443		Theory			2	20)	60	100
(4T43)		Laboratory			50				50	100

Pre-requisit	e Course Codes, if any. Basic Electrical Engineering				
Course Objective: To study controlling aspects of major types of power electronic converters in					
analog and di	igital domain with appropriate signal conditioning and sensing circuits				
Course Out	comes (CO): At the End of the course students will be able to				
1	To study role of digital hardware in modern power control				
2	To study different digital signal processing hardware and their organizations				
3 To study different discretization techniques					
4	To master the Practical Power control techniques with digital hardware				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	2											
2	2	3										
3		2.5										
4		3	2.5									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PEO/PSO	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1	2	1					
2	2				3		
3	2				2		
4	2				2		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Theory Component

Module	Unit	Topics	Dof	Uma
No.	No.	Topics	Kel.	пrs.
1	Title	Organization of Digital Signal Processors		09

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	1.1	Numbering System, Architecture, memory maps, Assemblers, cross	
		compilers, ADCs, Analog Comparators, PWM Blocks, Communication	
		protocols, FPGAs with Logic blocks and ARM core, Dual-core DSP for	
		control and communication, interfacing of Voltage and Current sensing	
		Circuits	
2	Title	Discrete-time implementations of Fundamental Functional Blocks	
	2.1	Implementation of Discrete time equations (IIR and FIR),	
		Representations with Discrete Time Structures	
	2.2	Low Pass and High-pass filters, Proportional Integral and Derivative	00
		Controller, Harmonic Oscillators, Reference frame transformations,	09
		Phase-shift and quadrature filters, Phase lock-loop, higher order digital	
		filters, etc.	
3	Title	Digital Control of grid connected systems	
	Impleme	ntation of control blocks of an Active Power Filter on DSP Platform	
	Selected	Active Power Filter Control Algorithms. DSP controllers for grid-	09
	connecte	d three-phase voltage-sourced inverters	
		1 8	
4	Title	Digital Control of DC-to-DC Converters	
	Closed lo	op discrete time control of Buck and Boost Switched Mode PWM Power	
	Supplies	and Battery Chargers with voltage and Current Mode Control.	
	FPGA-D	SP controllers for DC-DC converters in renewable energy	09
	applicati	ons	
	appiroun		
	Title	DSP Implementation of Modulators	
5			
		SPWM, Space Vector Modulation, Inverter Flux Control	
		Hardware in the Loop Simulation	09
6	*Self-	Laplace transformations, z-transformations, s-z transformations.	05
-	Study	discretization techniques, control system stability in continuous and	
		discrete time mode. SOGI	
	1	Total Hours (*exclud	led) 45

Laboratory Component (Indicative): To be completed minimum of 4 Lab Project Assignments with Practical Implementation on Digital Platforms

LAB Project-1 Grid Connected Inverters / Active Power Filter Implementation Lab Project-2 Closed Loop Control of DC-DC Converter / LED Drivers/SMPS control Lab Project-3

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Closed loop control of a Sine Wave Inverter with LC Filter using Inverter Flux Modulation Control

Lab Project-4

Implementation of a EV Battery Charger using CC/CV Mode of Operation

Sr. No	Title	Edition	Authors	Publisher	Year
1	Power Electronics:	Third	Ned Mohan,	John Wiley and	2003
	converters, Application and		Undeland and	sons	
	design		Robbin		
2	Power Electronics Circuits,	Fourth	Rashid M.H.	Pearson	2004
	Devices and Applications			Education	
3	Discrete Time Control	second	K. Ogata	Pearson	
	Systems	edition,		International	
		,			

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Simulation of Power	First	M. B. Patil, V.	Narosa	2013
	Electronic Circuits		Ramanarayanan,	Publishing	
			V.T. Ranganathan	House	
2	The switching function	First	Christos Marouchos	IET, Devices and	2008
	analysis of Power Electronic			Circuits	
	Circuits				
3	Digital Signal Processing	Second	Krzysztof Sozański	Springer	2017
	in Power Electronics Control				
	Circuits				
4	Control Circuits in	First	Miguel Castilla	The Institution of	2016
	Power Electronics			Engineering and	
	Practical issues in design			Technology	
	and implementation				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	P	Total
		2	0	2	2	6	2	0	1	3
PE- III	Artificial Intelligence and Mashing	Examination Scheme								
		Mashina Component		IS	ISE (%) N		MSE (%)		ESE(%)	Total
EC451 (1P)	EC451 (1P) Learning		Theory		20		20		60	100
	Learning	Labor	atory		50				50	100

Pre-requi	isite Course Codes, if any.	MA201: Linear Algebra MA203: Probability and					
		Stochastic Processes					
Course O	bjective: To provide a strong fou	ndation and basic exposition to the goals and methods of					
Artificial	Intelligence and Machine Learning	g. To enable them to apply these techniques in applications					
which inv	olve perception, reasoning and lea	arning.					
Course Outcomes (CO): At the end of the course students will be able to							
EC431.1	Describe the basic concepts and	techniques of Machine Learning.					
EC431.2	Evaluate Supervised and Un	supervised Machine Learning Algorithms based on					
EC431.2	applications.						
EC/21.2	Analyze the deep learning algorithm	thms for various types of learning tasks in various					
EC431.3	domains.						
EC421 4	Apply knowledge representation	, reasoning, and machine learning techniques to real-					
EC431.4	world problems.						

CO-PO Correlation Matrix: (1-Weak, 2-Medium 3-Strong)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO9	PO10	PO12
EC431.1		3								
EC431.2		3	2		3					
EC431.3				2	3	2	3			
EC431.4				2	3			2	3	2

CO-PEO/PSO Correlation Matrix : (1-Weak, 2-Medium 3-Strong)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC431.1	2					
EC431.2		3		3		
EC431.3			2		2	
EC431.4				3		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create

Theory Component

Modul	Unit	Topics	Ref.	Hrs.
<u>e No.</u>	Title	Fundamental of Machine Learning and Artificial Intelligence	1	06
	1.1	Notation of Dataset, Training Set and Test Set, No Free Lunch Rule.	1	00
		Relationships with Other Disciplines, Basic definitions of ML and		
		AI, Machine Learning vs AI, Machine Learning vs Deep Learning.		
	1.2	Types of Machine Learning-Supervised, Unsupervised,		
		Reinforcement, General Steps or Process of Machine Learning-		
		Feature Extraction, Feature Correlation, Feature Transform, Train		
		Model, Ensemble, Evaluate, Data cleaning, data transform/fitting.	-	
2	Title	Supervised Learning	2	07
	2.1	Regression: Linear Regression, Regularization Techniques		
		(LASSO), Polynomial Regression, Support Vector Machine (SVM)		
		and Regression (SVR, Extension to Multi-class Problems and usage)		
	2.2	Classification Pandom Forest Decision Trees Logistic Pagression		
	2.2	Support Vector Machines, KNN Naïve Bayes		
3	Title	Unsupervised Learning and Reinforcement Learning	1.3	06
	3.1	Clustering, K-Means, K Nearest Neighbours, Association Rule Learning,)-	
		Dimensionality Reduction, PCA, SVD, tSNE		
	3.2	Markov Decision, Monte Carlo Prediction.		
4	Title	Neural Networks/Deep Learning	2	07
	4.1	Introduction to ANN CNN, RNN/LSTM/GRU, Transfer Learning, Case Study (CNN)		
	4.2	Natural Language Processing: Text Mining. Generation, Applications		
	4.3	Predictive Analytics – Forecasting, Logistic, Time Series (ARIMA),		
		etc. Case Study (Time Series)		
5	Title	Applications of AI and Machine Learning.	3,6	02
6	Self-	Multivariate Regression, Gaussian Mixture Models, Ensemble		04
	Stud	Methods		
	У			
			Total	28

(Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component

Sr. No	Title of the Experiment
1	FIND-S algorithm used for finding the most specific hypothesis
2	Implement and demonstrate the Candidate-Elimination algorithm.
3	Write program to demonstrate the working of the decision tree based ID3 algorithm
4	Implement program for classifier
5	Implement the naïve Bayesian Classifier model to classify set of documents that you have assumed Calculate the accuracy, precision, and recall for your data set.
6	Apply EM algorithm to cluster a set of data stored. (k-Mean's algorithm)
7	Write program to implement k-Nearest Neighbor algorithm to classify the data set.
8	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points while selecting appropriate data set for your experiment and draw graphs.
9	Build an Artificial Neural Network (ANN) by implementing the Back-propagation algorithm
10	Case Study on Clustering/Anomaly/Fraud Detection

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Machine Learning		Andriy Burkov	McGraw Hill	2009
				Education	
2	Neural Networks and	-	Michael Nielsen	-	-
	Deep Learning				

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Introduction to Machine	Second	Ethem Alpaydın	MIT Press	2010
	Learning			Cambridge,	
				Massachusetts	
				London, England	
2	Introduction to Machine		Andreas C. Muller	Oreilly Publication	
	Learning with Python		and Sarah Guido		
3	Artificial Intelligence. A	Third	Stuard Russell and	Prentice Hall	2010
	Modern Approach,		Peter Norvig		
4	Pattern Recognition and		Christopher M.	Springer	2006
	Machine Learning		Bishop		

(Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name		Teaching Scheme (Hrs/week)			(Credits Assigned			
Code		L	Τ	Р	0	Ε	L	Τ	Р	Total
	Analog CMOS VLSI	3			5	8	3			3
PE-IV		Examination Scheme								
		Comp	onent	IS	E (%)	M	SE (%)	ES	E(%)	Total
EC434	Design	Theory			20		20	(60	100
(3T34)		Labor	ratory							

Pre-requisit	e Course Codes, if any.	ET101: Basic Electrical Engineering					
		EC101: Digital Systems and Microprocessors					
		ET202: Electronic Devices					
		ET205: Analog Circuits					
		PE-1T11: Digital CMOS VLSI Design					
Course Obj	ective:						
Course Out	comes (CO): After success	ful completion of the course, student will be able to					
CO1	Recognize trade-offs invo	lved in analog VLSI Circuits					
CO2	Analyze current mirrors a	nd bandgap references					
CO3	Analyze single stage an	nplifier using small signal model as well as large signal					
	methodology						
CO4	AnalyzeMOSFET based of	differential and operational amplifier					

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	CMOS analog building blocks	1	08
	1.1	Necessity of CMOS analog design		
	1.2	MOS Models: Structure of MOSFET, Review of characteristics		
		of MOS device, Second order effects, MOS small signal model,		
		MOS spice models		
2	Title	Current Mirrors and Bandgap References	1	08
	2.1	Passive and Active Current Mirrors: Basic current mirrors,		
		Cascode current mirrors and Active current mirrors		
	2.2	Band Gap References: General Considerations, Supply-		
		independent biasing, Temperature independent references, PTAT		
		current generation and Constant Gm biasing		
3	Title	Single Stage Amplifiers	1	10
	3.1	Basic concepts, Common source stage: resistive load, diode-		
		connected load, current-source load, triode load and source		
		degeneration		

(Autonomous Institute Affiliated to University of Mumbai)

	3.2	Source follower, Common gate stage, Cascode stage		
4	Title	Differential Amplifiers	1	06
	4.1	Single ended and differential operation, Basic differential pair,		
		Common-mode response, Differential pair with MOS loads and		
		Gilbert cell		
5	Title	MOS Operational Amplifiers	1,2,3	10
	5.1	Op-amp: General Considerations, performance parameters, One-		
		stage op-amps, Two-stage op-amps, Gain Boosting, Common-		
		mode feedback, Input range limitations, Slew Rate, Power supply		
		rejection		
	5.2	Stability and Frequency Compensation: General		
		Considerations, Multipole systems, Phase margin, Frequency		
		compensation, compensation of two stage op-amps		
	•	•	Total	42

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
01	Design of Analog CMOS Integrated Circuits	1 st Edition	B Razavi	Tata McGraw Hill	
02	CMOS Circuit Design, Layout, and Simulation	Student Edition	R. Jacaob Baker, Harry W. Li, David E. Boyce	Wiley	
03	CMOS Analog Circuit Design	3 rd Edition	P. E. Allen and D. R. Holberg	Oxford University Press	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	Т	Р	0	Ε	L	Т	Р	Total
	Selected topics in Power Electronics and	3	0	0	5	10	3	0	0	3
PE-IV		Examination Scheme								
		Component			ISE	(%)	MSE	(%)	ESE(%)	Total
EC444	Drives	Theory		20		20		60	100	
(4T44)	DIIVES	L	aboratory		-		-		-	-

Pre-requisit	e Course Codes, if any.	Basic Electrical Engineering					
Course Obje	Course Objective: To study controlling aspects of major types of power electronic converters in						
analog and d	analog and digital domain with appropriate signal conditioning and sensing circuits						
Course Outcomes (CO): At the End of the course students will be able to							
1	To introduce with the different	To introduce with the different applications of PE Converters					
2	To find innovative technique	es of power control at specific industrial applications					
3	To get exposure to cutting e	dge research in power electronics through scientific journals					
5	and research papers						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	2											
2	2	3										
3		2.5										
4		3	2.5									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PEO/PSO	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1	2	1					
2	2				3		
3	2				2		
4	2				2		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand J	Apply J	Analyze J	Evaluate	Create

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

The students are exposed to different applications of Power Electronics and Drives in the field of Electronic Communications, Energy storage, Pulse Power Control, illumination, industrial heating and refrigeration, reactive power control, electric vehicles, renewable energy, wireless energy transfer, Hydrogen electroliers, distributed generations, etc.

The students are asked to refer to cutting age research from different publications and archives not limited to the following list of research journals:

IEEE Transactions in Power Electronics, IEEE Transactions in Industrial Electronics, IEEE Transactions in Industrial Applications, IEEE Transactions on Vehicular Technology IEEE Transactions on smart-grid IET journal of Power Electronics IEEE journal of Emerging and selected topics in Industrial Electronics, etc.

At the end of the course students are asked to submit their thesis on any one selected topics and make presentation in presence of experts in the related field.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Τ	Р	0	Ε	L	Т	P	Total
		2	0	2	2	6	2	0	1	3
PE-IV	Telecom Network			E	xami	natio	n Scheme			
	Operations and	Comp	onent	ISI	E (%)	M	ISE (%) 1	ESE(%)	Total
EC454	Management	The	ory		20		20		60	100
(1Q)		Labor	atory		50				50	100

Pre-requisite Course Codes, if any.EC307: Computer Communication NetworkCourse Objective:To develop understanding the concept of Telecommunication networkmanagement, architecture and protocol. Appreciate the need for interoperable network management.This course offers students a hands-on experience managing network hardware and essential networkservices such as DHCP, DNS, ARP, FTP, Telnet, HTTP, SSH, SMTP, TFTP, and SNMP through theuse of scripting and python programming.Course Outcomes (CO): At the and of the course students will be able to

Course O	utcomes (CO): At the end of the course students will be able to
EC422 1	Identify network requirements and apply the concept of structured wiring, structured
LC452.1	Network Design and select the best solutions to meet the needs of a business.
EC422.2	Analyze the network management standards and protocols to support FCAPS Model of
LC452.2	Network Management.
EC422.2	Identify the functions of the Network Manager and show how management information
EC452.5	is stored & accessed within a managed object.
EC422.4	Apply effective troubleshooting and debugging techniques to resolve the network
LC452.4	problems.
EC422.5	Apply fundamental components of Network Management and implement server and
EC432.3	agent architectures to monitor and control networks, devices and applications.
EC432.6	Develop programs in Python to solve real problems in Network Management.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC432.1			2	2								
EC432.2			2	2								
EC432.3					3							
EC432.4					3							
EC432.5					3							
EC432.6					3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

(Autonomous Institute Affiliated to University of Mumbai)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC432.1			2			
EC432.2		2				
EC432.3			2			
EC432.4		2		3	2	
EC432.5			2		3	
EC432.6		2			2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	✓ Create

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to Enterprise Network Design	2,1,3	08
	1.1	Introducing Network Design Concepts: Medium Enterprise Design		
		Profile (MEDP)-LAN Design, LAN design principles, LAN		
		design model for the medium enterprise, Considerations of a multi-		
		tier LAN design model for medium enterprises, Designing network		
		foundation services for LAN designs in medium enterprise,		
		Scalability, Service uptime, WAN Design, Business and network-		
	1.0	based economy.		
	1.2	Challenges of IT managers, Network management architecture and		
		organization network management perspectives management:		
		Goals, organization and functions	1.0.0	
2	Title	OSI Network Management	1,2,3	02
	2.1	Network management standards, Network management models,		
		Organization model, Information model Communication model and		
		functional model, Abstract syntax notation – encoding structure,		
		macros, functional model CMIP/CMISE		
3	Title	Internet Management (SNMP)	1,2,3	08
	3.1	SNMP-organizational model-System overview. Information model,		
		communication model, functional model, SNMP proxy server,		
		Management information, Protocol SNMPv1,v2 and V3, Remote		
		monitoring. RMON, Limitations of SNMP, Beyond SNMP,		
		NETCONF/YANG		

(Autonomous Institute Affiliated to University of Mumbai)

4	Title	Telecommunication Management Networks (TMN)	1,2.3	03
	4.1	Need for TMN, Conceptual TNM model, TMN Network		
		Management Architecture, TMN management services architecture		
		and TMN implementation		
5	Title	Network Management Tools and Applications	1,4,5	07
	5.1	System Utilities for network management, Network statistics and measurements, NMS Design, NMS components, NMS Server Architecture, Network Management Systems and FCAPS, Automatic Fault Management and Event correlation Techniques, Security Management		
6	Self	Broadband Network Management: ATM Network Management		04
	Stud	and Wireless Network Management		
	y			
			Total	28

Laboratory Component

Sr. No	Title of the Experiment
1	Network Monitoring tools: a) Status b) Route c) Traffic Tools d) Audit
2	Monitoring and management network using SNMP: a) Basic SNMP b) Advanced SNMP v3 Authentication/Encryption and ACL c) SNMP Trap Daemon Implementation
3	Configuration SNMP Protocol on Cisco Router using Packet Tracer
4	Configuration manageable Switch: L2/L3 Switch
5	LAN Troubleshooting using tcpdump and Wireshark
6	Monitoring of services and Servers using a) Observium/ Cacti b)Nagios/Icinga
7	Implementation of Centralized Logging infrastructure and security event correlation
8	Open Source SIEM Project
9	Python scripts for Network Monitoring
10	Network Management using Python

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Network Management		Mani Subramaniam	Addison Wisely,	2000
	Principles and Practice			New York	
2	Designing and		Kenneth Stewart,	Cisco Press	
	Supporting Computer		Aubrey Adams,		
	Networks, CCNA		Allan Reid, Jim		
	Discovery Learning		Lorenz		
	Guide				

(Autonomous Institute Affiliated to University of Mumbai)

3	Network Management:	 J. Richard Burke	Pearson	
	Concepts and Practice, A		Publications.	
	Hands-On Approach			
4	Network Management:	 Benoit Claise- CCIE	Cisco Press	
	Accounting and	No. 2686; Ralf		
	Performance Strategies	Wolter		
5	Network Management	 Alexander Clemm	Cisco Press, ISBN-	2006
	Fundamentals		13: 978-158720137	
6	Python for Software	 Allen B. Downey	Cambridge	2009
	Design		University Press	
	_		ISBN-13: 978-	
			0521725965	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sem-VIII

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course(Category)	Course Name	Teachin	Teaching Scheme (Hrs/week)				Credits Assigned			
Code	Course Maine	L	Т	Р	0	Ε	L	Т	Р	Total
		3	-	-	6	09	3	-	-	3
PC	Fundamentals of	Examination Scheme								
	Antenna	Compo	nent	ISE	(%)	MS	E (%)	ES	E(%)	Total
EC306		Theo	ry	2	20		20		60	100
		Labora	tory	-	-					

Pre-requisit	e Course Codes, if any. EC304: Electromagnetic Waves				
Course Objective: The objective of the course is to provide a fundamental understanding of					
Antennas					
Course Out	comes (CO): At the end of the course students will be able to				
EC306.1	Calculate the fundamental parameters of Antenna.				
EC306.2	Describe fundamental theory of antennas.				
EC306.3	Select antenna based on applications.				
EC306.4	EC306.4 Evaluate antenna based on applications.				
EC306.5 Design Antenna Arrays.					
EC306.6	Design antenna based on given requirements.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC306.1	2	3						2	2	2		
EC306.2	2	3						2	2	2		
EC306.3		2						2	2	2		
EC306.4		2		2				2	2	2		
EC306.5		2		2				2	2	2		
EC306.6	2	1						2	2	2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC306.1		2				-	
EC306.2		2				2	
EC306.3		2				2	
EC306.4		2				2	
EC306.5		2				2	
EC306.6		1				1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand√	Apply√	Analyze√	Evaluate	Create

(Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module	Unit	Topics	Ref	Hrs.
No.	No.		•	
1		Fundamental Concepts:	1	08
(CO1)	1.1	Introduction, types of Antennas, Radiation mechanism, Poynting vector,		
		Steradian concept, Power intensity		
	1.2	Antenna Parameter: Radiation pattern, Radiation power density,		
		Radiation Intensity, Gain, Directivity, HPBW, FNBW, Beam efficiency,		
		Return loss VSWR Antenna Efficiency Effective Aperture		
		Communication link and Friis transmission equation.		
2		Radiation from wires and loops	1	10
(CO2,	2.1	Introduction, Infinitesimal dipole: Radiation zones, Total radiated		
CO3)		power, Radiation resistance, Directivity, Effective area, Short dipole,		
		Finite-length dipole: Radiated power, Radiation resistance, Directivity,		
		Effective area, Half-wave dipole and its properties, Loop antenna.		
3		Aperture Antennas	1	06
(CO3,	3.1	Introduction, Field equivalence principle, Love's equivalence principle,		
CO4)		Electrical and magnetic conductor equivalence principle, Computation		
		aperture antennas. Horn antenna design principle		
4		Antenna Arrays	1	10
(CO5)	4.1	Introduction, Two-element array, Example problems, Pattern		
		multiplication concept, N-element array, Uniform array, Array factor,		
		Broad-side and end-fire arrays, Phased array, Directivity and pattern		
		characteristic of linear uniform array, non-uniform array, Binomial		
		array, Dolph-Chebyshev array concept, Design principle of Chebyshev		
5		array and examples, Planar arrays		
5	2.1	Microstrip Antennas	1.4	00
(000)	3.1	Circularly polarized antennas, Avial Ratio, MSA suspended	1,4	08
		Configuration.		
	3.2	MSA Arrays and Feed Networks, Corporate and Series Feeds		
6 (Self		Advanced Antennas:		06
Study)		Reflector antenna, Dielectric Resonator antenna, Metamaterial based		
		antennas, Wearable antenna, Reconfigurable antennas, Ultra-wideband		
		antennas, Smart Antennas		40
			lotal	42

(Autonomous Institute Affiliated to University of Mumbai)

Text Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antenna Theory: Analysis	Constantine A.	Fourth	Wiley	1982
	and Design	Balanis			

Reference Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antennas & Wave	J.D. Kraus, R.J.	Fourth	McGraw Hill	2011
	Propagation	Marhefka, and			
		A.S. Khan			
2	Handbook of Microstrip	R. James and P.S.	Third	Peter	1989
	Antennas	Hall		Peregrinus	
3	Antennas and Radio Wave	R. E. Collin	Fourth	McGraw-Hill	1985
	Propagation				
4	Broadband Microstrip	Girish Kumar and	First	Artech House	2003
	antennas	K.P. Ray			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week) Credits Assi						s Assig	ned		
(Category)	Course Name	L	T	P	0	E	L	T	Р	Total	
Code											
		3	-	-	5	08	3	-	-	3	
РС	Computer			Examination Scheme							
	Communication	Component		ISE	(%)	MSI	E (%)	ESF	E(%)	Total	
EC307	EC207	Networks	Theory		2	0	20		60		100
		Labora	tory	-	-				-		

Pre-requisit	e Course Codes, if any. EC301: Analog and Digital Communication					
Course Obje	ective: The objective of the course is to provide a fundamental understanding of					
ComputerCommunication networks.						
Course Out	comes (CO): At the end of the course students will be able to					
EC307.1	Apply Conceptual understanding and functional aspects of computer communication					
	and telecom networks.					
EC307.2	Analyze design and configure small and medium sized computer network that meets a					
EC307.2	specific need for communications.					
EC207.2	Simulate computer networks and analyze the simulation results including troubleshoot					
EC307.5	connectivity problem occurring at layers of TCP/IP model.					
EC207 4	Apply the principles behind the Modern Network approaches such as SDN NFV and					
EC307.4	IoT and security issues.					

CO-PO Correlation Matrix: (1-Weak, 2-Medium, 3-Strong)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC307.1	3	3										
EC307.2			3	2	3							2
EC307.3			3		3	2						
EC307.4	2	2							3	3		3

CO-PEO/PSO Correlation Matrix : (1-Weak, 2-Medium 3-Strong)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC307.1		2				
EC307.2		2		3		
EC307.3		2			3	
EC307.4		2				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze	Evaluate	Create
---------------------	-------	---------	----------	--------

Theory Component

Modu	Unit	Topics	Ref	Hr
10 IO.	INO.	Fundamental of Commuter Naturalia	•	S.
		Fundamental of Computer Networks	1	08
	1.1	Basic definitions. Networking devices. Layering architecture: The USI		
	1.2	The Interest metacols TCP/ID metacol suit ID Protocol and address		
	1.2	What is the Internet? Delay in the Internet (trace route and give) History		
		of the Internet Security in the Internet (trace route and ping). History		
	T:41.	of the Internet. Security in the Internet.	2	06
	2.1	Enterprise Network Design		00
	2.1	Structured Network Design consist of Core Lever Distribution Lever and		
		A coord		
	2.2	Access.		
	2.2	ver Technologies, Investigating Server Forms and Security Integrating		
		Permete Sites into the Network Design		
		Remote Sites into the Network Design.		
3	Title	Transport and Application Layer	1,3	06
	3.1	Transport Protocols introduction. Reliable data transfer - Stop-and-wait		
		and Go-back-N design and evaluation. TCP and UDP semantics and		
		syntax. TCP RTT estimation. Principles of congestion control - efficiency		
		and fairness, reactive and proactive. Socket's programming A simple		
		client-server implementation.		
	3.2	Application layer: Application layer protocols, Client-server as a key		
		model. Web, HTTP, FTP, SMTP, POP3, and DNS. Peer-to-peer file		
		sharing networks.		
4	Title	Software Defined Network and Network Function Visualization	5	10
	4.1	Network Requirements - The SDN Approach - SDN- and NFV-Related		
		Standards - SDN Data Plane - OpenFlow Logical Network Device -		
		OpenFlow Protocol - SDN Control Plane Architecture - REST API - SDN		
		Application Plane Architecture.		
	4.2	NFV Concepts - NFV Reference Architecture - NFV Infrastructure -	ļ	
		Virtualized Network Functions - NFV Management and Orchestration -	ļ	
		NFV Use Cases - SDN and NFV	 	
5	Title	Internet of Things (IoT) SECURITY	1,3	10
	5.1	Threats and attacks. Symmetric and public key cryptography. IPsec-		
		Authentication Header-Encapsulating security payload,		

(Autonomous Institute Affiliated to University of Mumbai)

	5.2	Secure sockets-Secure Socket Layer (SSL) - Firewalls and Internet	
		access- Packet filter firewall- Proxy firewall- VPNs – Mobile IP – Header	
		Compression – Voice over IP –	
	Title	Networks	5
6	Self-	Types of Networks, Transmission media, Network Topologies	
	Study		
Total			42

Textbooks

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	TCP/IP protocol suit	Fourth	Behrouz A.	McGraw Hill	2009
			Forouzan (Author)	Education	
2	Introducing Network	-	CCNA Discovery	-	-
	Design Concepts		Learning Guide		
3	Computer Networking: A	Fifth	J. F. Kurose and K. W.	Prentice Hall	2009
	Top-Down Approach		Ross		
4	Data Communication and	Fourth	B.A.Forouzan	McGraw Hill	2017
	Networking				
5	Information Security:	First	Deven Shah	Wiley	2007
	Principles and Practice				

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Foundations of Modern		William Stallings	Addison-Wesley	2015
	Networking: SDN, NFV,			ISBN:	
	QoE, IoT, and Cloud			9780134175393	
2	Computer Networks	Fifth	A.Tanenbaum	Pearson Education	2013
3	Data and Computer	Tenth	William Stallings	Pearson Education	2013
	Communications				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

PROGRAM ELECTIVE COURSES

• 4 Electives are sufficient to specialize in a particular vertical/thread/area.

(Autonomous Institute Affiliated to University of Mumbai)

TD/ PE	PE1	PE2	PE3	PE4	PE5	PE6
THREAD 1: Communication	T11: Information Theory & Coding	T12: Optical Fiber Communication	T13: Microwave Communicati	T14: Space Communication	T11, T12, T21,	T11, T12, T21,
			on	on Technologies	T22,	T22,
THREAD 2:	T21:	T22:	T23:	T24:	T31,	T31,
Signal Processing	Speech and Audio	Wavelet	Image & Video	Principles Soft	T32,	Т32,
	Tiocessing	Transform	Processing	Computing	T41,	T41,
THREAD 3:	T31:	T32:	T33:	T34:	T42,	T42,
VLSI &	Digital CMOS VLSI	Real Time	Semiconducto	Mixed VLSI	X, Y	X, Y
Embedded Systems	Design	Embedded Systems	r Technologies	Design	P, Q	P, Q
THREAD 4:	T41:	T42:	T43:	T44:		
Power Electronics and Energy Systems	Control of Power Electronics Converters	Electric Motor Drive Systems	Embedded & Digital Control of PE Systems	Selected topic in Power Electronics & Drives		
GENERAL	X:	Y:	P:	Q:		
	Computer Communication Network (Cat2) T11, T12, T21, T22, T31, T32, T41, T42	Fundamentals of Antenna (Cat2) T11, T12, T21, T22, T31, T32, T41, T42	Artificial Intelligence & Machine Learning T13, T14 T23, T24 T33, T34 T43, T44	Telecomm Network Operations & Management T13, T14 T23, T24 T33, T34 T43, T44		